Underwater target classification in changing environments using an adaptive feature mapping
نویسندگان
چکیده
منابع مشابه
Underwater target classification in changing environments using an adaptive feature mapping
A new adaptive underwater target classification system to cope with environmental changes in acoustic backscattered data from targets and nontargets is introduced. The core of the system is the adaptive feature mapping that minimizes the classification error rate of the classifier. The goal is to map the feature vector in such a way that the mapped version remains invariant to the environmental...
متن کاملUnderwater target classification using wavelet packets and neural networks
In this paper, a new subband-based classification scheme is developed for classifying underwater mines and mine-like targets from the acoustic backscattered signals. The system consists of a feature extractor using wavelet packets in conjunction with linear predictive coding (LPC), a feature selection scheme, and a backpropagation neural-network classifier. The data set used for this study cons...
متن کاملAdaptive quantum computation in changing environments using projective simulation
Quantum information processing devices need to be robust and stable against external noise and internal imperfections to ensure correct operation. In a setting of measurement-based quantum computation, we explore how an intelligent agent endowed with a projective simulator can act as controller to adapt measurement directions to an external stray field of unknown magnitude in a fixed direction....
متن کاملMapping 3D Underwater Environments with Smoothed Submaps
This paper presents a technique for improved mapping of complex underwater environments. Autonomous underwater vehicles (AUVs) are becoming valuable tools for inspection of underwater infrastructure, and can create 3D maps of their environment using high-frequency profiling sonar. However, the quality of these maps is limited by the drift in the vehicle’s navigation system. We have developed a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks
سال: 2002
ISSN: 1045-9227
DOI: 10.1109/tnn.2002.1031942